This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

You are free to: - Share — copy and redistribute the material in any medium
or format. - Adapt — remix, transform, and build upon the material for any
purpose, even commercially.

Under the following terms: - Attribution — You must give appropriate
credit, provide a link to the license, and indicate if changes were made.

How to provide appropriate credit: Please use the following attribution for-
mat:

“[Tile of Article]” by Kamal Al-Ameri, sourced from https://0x177.codeberg.page
. Licensed under CC BY 4.0.

Efficient SDF Collision Point Detection

Kamal Al-Ameri
August 2025

1 Abstract

Signed Distance Functions (SDFs) have been widely used in animation, but have
limited use in interactive contexts. This is partially due to the computational
overhead of rendering SDFs, but is also due to the complexity of collision detec-
tion between general SDFs. Most previous methods either relied on generating
a discrete surface from the SDF, such as voxelization or polygonization, and
other methods did not discretize the SDF, but are too expensive for real time
applications, such as random sampling. We propose an algorithm that utilizes
properties of SDF's to efficiently find rather accurate collision points from two
arbitrary SDFs, assuming that the SDF's satisfy certain conditions that are true
for most, if not all, SDF's.

2 Introduction

We will briefly introduce a key concept fundamental to this text and explain the
short comings of previous methods, before explaining our proposed approach.

2.1 Signed Distance Functions

A signed distance function is a scalar-valued function in the form of f(&), such
that it returns the distance from any point in space to the surface of the object
it represents. The distance is signed because if the point lies outside of the
shape, the distance is positive. But if it lies inside of the shape, the distance is
negative.

For example, the SDF of a sphere centered at C' with radius R is f(z) =
lz—Cl| - R

As the value of the SDF is 0 when the point is on the surface, this means
that the SDF represents an implicit surface.

Figure 1: Visualizing the SDF of a Two-Dimensional Circle

2.2 Shortcomings of Previous Methods
2.2.1 Discretization-Based Methods

Discretization-based methods create a discrete geometry, that is easier to work
with, from the implicit surface of the SDF. Note that all of these methods require
regeneration of the discrete geometry whenever the implicit surface changes.
Common choices are:

e Voxelization, which splits the space which the SDF occupies into evenly
sized surfels, typically pixels for two-dimensional contexts or voxels for
three-dimensional contexts, and prunes surfels that do not intersect the
surface of the SDF. The space complexity and time complexity of this
method scale exponentially with dimension, and may lose significant de-
tails for complex surfaces such as fractals.

e Polygonization, which generates a set of polygons (typically triangles)
from the implicit surface. Two common algorithms for such a task are
marching cubes [[1]][[2]] and marching tetrahedra. However, these algo-
rithms too lose important detail for complex shapes, and are quite expen-
sive to compute.

2.2.2 Random Sampling and Root Finding

The random sampling method relies on sampling the two SDF at random points,
until it finds a point on the intersection of the two surfaces. However, this
method may have unreliable performance because in collision-detection contexts,
the intersection is often quite small. Because of this, naive random sampling
may need to sample an excessive amount of samples to find an intersection.

This can be mitigated by using random sampling until a sufficiently close
sample point, p, is found, and using a root finding algorithm initialized at p
to find a surface point. However, Finding a sufficiently close sample point also
suffers from the same problem of potential excessive sampling. Our method uses
an approach derived from this method, but with efficient spacial pruning and
an inside-out approach to random sampling.

3 Proposed Method

3.1 Important Property of Finite Monotonically Non-Decreasing
Isotropic Shapes

We will not rigorously draw connection between the distance between two shapes
A and b defined by SDFs A(z) and B(x) respectively, to regular definitions of
distance. As we only use the term distance to draw intuitions. This, in fact,
has very little to do with Euclidean distance.

Informally, we will define isotropic shapes as shapes that do not differ by
directional information. In other words, a shape defined by a signed distance
function f(z), where x is a position in space, is isotropic if and only if f(z) can
be written as a function of ||z — ¢||, where ¢ is an offset (i.e. centroid of object),
which we will call f;(j), j = ||z — ¢||. An isotropic shape is finite if it has
a finite volume, and is monotonically non-decreasing if f;(j) is monotonically
non-decreasing. By inspection, you can see that all such functions are radially
symmetric. We

Theorem 1 Assuming that all SDFs are differentiable almost everywhere. The
exact distance d between any finite monotonic isotropic shape A defined by the
SDF A(x), and any other shape B defined by the SDF B(z), is trivial to calcu-
late, because of the following:

e By definition of isotropic shapes, A(x) can be written as a function of
||z — c||, which we will label A(j), which is a scalar function.

o The surface of A is the set of points x such that
Ag([lz = cl[) =0
, which can be described as the set of points such that ||x — c|| = ra, where

At(TA) = 0

o Let Sa be the set of points x such that A(x) = 0.

o The distance between A and B is the value of vInig B(z). Because Ai(j)
TESA

18 monotonically non-decreasing, the minimum such value will lie in the
direction from the centroid C to the surface of B, which is —VB(C).
Therefore, the minimum such value is Ay(B(C)).

We will focus on two isotropic shapes: spheres, as this text will focus on
3-dimensional space, and points, which are degenerate spheres.

4 Core Algorithm

4.1 Collision Manifold

Suppose that we have two shapes, A and B, each defined by their signed distance
function, A(x) and B(z) respectively. For our algorithm to work, we will need
to define the collision manifold to finite space. For our purposes we will use
Axis Aligned Bounding Boxes (AABBs), due to their wide use and efficiency of
intersection. As such, we will define AABB 4 and AABBpg to be the AABBs of
A and B respectively.

For clarity, we will define a finite AABB as an AABB such that all elements
of the min and max points defining the AABB are finite.

We will define AABB;,; to be the intersection of AABB4 and AABBpg.
If such intersection does not exist, then there is no collision between the two
shapes. And if AABB;,; is non-finite, we can not continue with the algorithm,
although we cannot guarantee that the two shapes are not colliding.

4.2 Sphere Packing

We will define the following parameters for the algorithm:

e K such that 0 < k < 1, is a parameter for the coverage of AABB;;.
Ideally, it defines the exact percentage of AABB;,; that is to be covered
by spheres, however, practical implementations may use it as a general
coverage guide,

e ¢., which defines the minimum unsigned distance between a point p to the
intersection of A and B such that p is considered a point of collision,

e «, the learning rate, and
® Naz, the maximum number of iterations for the root-finding algorithm.

The next step of the algorithm is to pack AABB;,; with spheres. Note
that it is possible to use known, non-overlapping sphere packing algorithms,
like Hexagonal Close Packing, even though they can only cover up to a certain
percentage of AABB;,;. This is because of the following lemma:

Lemma 1 Because SDFs are generally either lipschitz continuous or approx-
imately lipschitz continuous, gaps between spheres may be ignored in practical
implementations, as long as the spheres are sufficiently dense.

We will define G as the set of spheres generated by the sphere packing
algorithm chosen by the implementation, such that each sphere G; is defined by
it’s centroid C; and radius R;.

A natural question is why not use the SDF to guide the sphere packing? One
way to do this is to sample a random point p to get a distance d, and create a
sphere at p with radius d, and to exclude sampling points located in an existing
sphere. However, such a method is not concurrency-friendly, which for more
complicated SDF's could decrease performance significantly.

4.3 Pruning Spheres

To set up for this section, we will provide the following theorem:

Theorem 2 For any two SDFs A(z) and B(x), by definition of SDF's, A(x) <0
indicates whether a point x lies on the boundary or inside of the shape repre-
sented by A(x). Similarly, B(xz) < 0 indicates whether a point x lies on the
boundary or inside of the shape represented by B(zx).

The intersection of A(x) and B(z) is the set of points x such that A(z) <
0 and B(z) < 0, which is equivalent to max(A(z), B(x)) < 0, because of the
following:

o If A(x) <0 A B(z) <0, then the larger of A(x) and B(z) must also be
less than or equal to 0.

o Conversely, if max(A(z), B(x)) < 0, then both A(x) and B(x) are less
than or equal to 0.

By Theorem 1 and Theorem 2, the exact distance between any finite mono-
tonically non-decreasing isotropic SDF and the intersection of any two SDF's is
trivial to calculate.

Thus, we will define F' C G to be the set of spheres in G such that for each
sphere F; € F, |max(A(C;), B(C;)) — R;| < €.. In other words, it is the subset
of packed spheres that intersect both shapes, with a given tolerance. If this set
is empty, then either there is no collision, or we ran into a false negative.

4.4 Finding a Collision Point

In order to conclude the algorithm and find a collision point z, we will use a
root finding algorithm to find a point = such that A(z) < e, A B(z) < e..
However, the function f(z) = max(A(z), B(x)) that we used for intersections
is non-differentiable at certain points. To prevent this from causing issues, we
consider the following function:

(@) = A(2)* + B(x)

Because 02 = 0, this function satisfies the constraint that f(z) = 0 when x
is a point on the surface of the intersection of the two shapes. And given the
gradients of A(z) and B(z), which can be easily approximated if not available,
the gradient of f(z) is:

Vf(z) =2A(x)VA(x) + 2B(x)VB(x)

Thus, we may use gradient descent to find a point x such that f(x) < e.:
Tnt1 = —2paVf(z), n >0, n+ 1< Ny

Terminating the algorithm once f(x) < €.

5 Implementation and Benchmarks

5.1 Thimni, our Implementation

We have written an n-dimensional implementation of this algorithm in rust [3],
with examples and a demo provided [4].

The examples include a simple two-dimensional collision showcase, a simple
three dimensional collision showcase, and a three-dimensional collision show case
between a sphere, a plane, and a dynamically evolving fractal shape. The demo
provided is a simple first person demo set on a large, dynamic fractal, where
the player is a capsule shape destroying the fractal.

For performance, Thimni does not use an ideal sphere packing algorithm,
but rather uses one that is highly suboptimal when it comes to overlap. Thimni
by itself does not provide a linear algebra library, and rather allows the use of
any linear algebra library with a vector struct implementing certain functions.

5.2 Benchmarks

All of the following benchmarks are done on a i7-7700HQ CPU, on a linux
operating system. They use the glam linear algebra library. These benchmarks
generates a number of a shape scattered around a region of space, with an
R*-tree to optimize nearest neighbour queries.

H shape number of instances avg. runtime (ms) H
sphere 1000)
menger sponge fractal 100 105
References

[1] William E. Lorensen and Harvey E. Cline. “Marching cubes: A high reso-
lution 3D surface construction algorithm”. In: Proceedings of the 14th An-
nual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’87. New York, NY, USA: Association for Computing Machinery,
1987, pp. 163-169. 1SBN: 0897912276. DOI: 10.1145/37401.37422. URL:
https://doi.org/10.1145/37401.37422.

[2] William E. Lorensen and Harvey E. Cline. “Marching cubes: A high resolu-
tion 3D surface construction algorithm”. In: SIGGRAPH Comput. Graph.
21.4 (Aug. 1987), pp. 163-169. 1sSN: 0097-8930. pOI: 10 .1145/37402.
37422. URL: https://doi.org/10.1145/37402.37422.

[3] Kamal Al-Ameri. Thimni, A rust crate for SDF collision detection. Code-
berg repository. 2025. URL: https://codeberg.org/0x177/thimni.

[4] Kamal Al-Ameri. A thimni-based collision demo on a destructable, dynamic
fractal. Devlog. 2025. URL: https://0x177.codeberg.page/coll_demo_
pub.html.

