
This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

You are free to: - Share — copy and redistribute the material in any medium
or format. - Adapt — remix, transform, and build upon the material for any
purpose, even commercially.

Under the following terms: - Attribution — You must give appropriate
credit, provide a link to the license, and indicate if changes were made.

How to provide appropriate credit: Please use the following attribution for-
mat:

“[Tile of Article]” by Kamal Al-Ameri, sourced from https://0x177.codeberg.page
. Licensed under CC BY 4.0.

1

Reexamining the Computational Efficiency of

separable quantum support vector machine

training oracles

Kamal Al-Ameri

August 2025

1 Abstract

The quantum support vector machine (QSVM) is one of the the simplest meth-
ods of data classification on quantum computers, but suffers from deep circuits
which current noisy hardware can not simulate accurately. In this text, we ex-
amine the qubit scaling of the approach of kernel generation proposed in a 2019
paper by Jiaying Yang, Ahsan Javed Awan, and Gemma Vall-Llosera, mathe-
matically proving the redundancy of the majority of the computation done in
the training-data oracle proposed in the original paper, and demonstrate that
we can achieve the same result as in the original paper using a single qubit and
a single data point.

2 Introduction

Quantum machine learning is one of the most actively researched fields of quan-
tum computation, and many algorithms for implementing machine learning al-
gorithms on quantum computers have been proposed [2]. However, currently
available quantum hardware, also known as Noisy Intermediate Scale Quantum
(NISQ), suffers from increasingly inaccurate results as the complexity of the al-
gorithms increases [3]. A previous paper by Yang et al. [4] proposed a Quantum
Support Vector Machine (QSVM) algorithm, a crucial part of which was opti-
mized to have as little circuit depth as possible, arguably providing a significant
advantage for NISQ hardware. Additionally, their proposed method removes
the need for the usage of the quantum tomography technique. We mathemati-
cally prove and numerically demonstrate that the same accuracy achivied in the
paper could be achieved without the overwhelming majority of the computa-
tional overhead. In fact, we prove that almost all of the computational overhead
is redundant.

2

Figure 1: SVM Classification

ŵ · x̂
+
b =

0
ŵ · x̂

+
b =

−
1

ŵ · x̂
+
b =

1

3 Background

3.1 The SVM Algorithm

The support vector machine algorithm is used to classify data into one of two
classes, by finding a hyperplane which divides the points into 2 sections as
accurately as possible. More formaly, the SVM tried to find the hyperplane
that divides the data into two classes and has the maximum distance to the
nearest point of each class.

3.2 Basic Quantum Computing Concepts

3.2.1 The Qubit

The building block of quantum computing is the qubit, which like a classical
bit, can exist in two states: |0⟩ and |1⟩. However, unlike a classical bit, it
can exist in a superposition of the two states, mathematically represented as
|ψ⟩ = α |0⟩+ β |1⟩, where β and α are complex amplitudes, and |ψ⟩ is the state
of the qubit. When the superposition collapses, the qubit is projected into either
|0⟩ or |1⟩, with probabilities |α|2 and |β|2 respectively.

3.2.2 Entanglement

A group of qubits may become entangled, meaning that their states are intrin-
sically linked. Measurement of one qubit instantaneously determines the state
of its entangled partner.

3

3.2.3 Quantum Gates and Circuits

Quantum gates are operations that manipulate qubits, and can create super-
position and entanglement. A set of quantum gates is called a circuit, which
has the properties or width, which is the number of qubits used in the circuit,
and depth, which is the count of time steps needed to execute all the gates in
a circuit, where gates that can be executed in parallel count as one time step,
while those that must be executed sequentially count as multiple time steps.

3.2.4 The Quantum Statevector

The quantum statevector for a system with n qubits is a vector of length 2n,
where each element is a complex amplitude of a quantum basis state of the
system. In other words, for a quantum state |ψ⟩, such that:

|ψ⟩ = α1 |000..0⟩+ α2 |000..1⟩+ ...+ αn |111..1⟩

the quantum state vector of |ψ⟩ is the vector


α1

α2

...
αn


Note that because both the of the 2 equations above represent the same

concept, |ψ⟩ will refer to both the quantum state and the quantum state vector
of itself.

We will not explain dirac notation in depth in this text, but it is worth
mentioning that ⟨ψ| is the complex conjugate of |ψ⟩, ⟨α| |β⟩ is the inner product
of ⟨α| and |β⟩, and that |α⟩ ⟨β| is the outer product of |α⟩ and ⟨β|.

4 Mathematical Proof of Redundancy

|0⟩ Ry(2θ1)

|0⟩ Ry(2θ2)

...
...

...

|0⟩ Ry(2θn)

Figure 2: Training-data oracle proposed in the original paper

In this text, we refer to [4] as the original paper, as we will reference it quite
often.

The original paper proposes a training-data oracle for generating the kernel
of the support vector machine, whose width scales linearly with the number
of training points, but has a depth of one (see fig. 2). This means that the

4

circuit uses much more qubits (M qubits for M training points, rather than the
log2M+1 qubits used by the training-data oracle in [5]), but the constant depth
of the circuit arguably provides it with an advantage for near-term quantum
computers, which can handle up to around 100 qubits, but suffer from too
much noise to handle deep or dense circuits. [3]

The oracle proposed in the original paper is composed of one Ry gate being
applied to each qubit. Then, the density operator of the final state, |ψ⟩, is
constructed, and then it’s partial state is computed, which is passed to the
HHL algorithm. Proving the redundancy of the oracle is quite simple:

The density operator of a separable (i.e. unentangled) quantum state vector
is the tensor product of the density operators of it’s qubits (see sec. 2.4.1 of
[1]). Therefore, the density operator of |ψ⟩ is:

ρ = ρ1 ⊗ ρ2 ⊗ ...⊗ ρm (1)

Where ρi is the density operator of the i-th qubit.
The partial trace, Trb, of a tensor product of quantum states, tracing out

every state but the b-th state, is equal to ρb, up to some normalization factor
(see sec. 8.3.1 of [1]) (for our data, normalized as in the original paper, the
normalization factor is 2). Thus:

via Eq. (1)

Trb(ρ) = Trb(ρ1 ⊗ ρ2 ⊗ ...⊗ ρb ⊗ ...⊗ ρm)

= 2ρb

= 2(|Ry(2θb)(|0⟩)⟩ ⟨Ry(2θb)(|0⟩)|) (2)

Where θb is the training theta for the b-th qubit.
Therefore, the training-data oracle can achieve the same results demon-

strated in the paper using only 1 training point, 1 qubit, and one rotation
gate.

Note that some quantum circuit frameworks use different conventions for
rotation gates, most commonly, flipping the sign of the angle. to prevent such
issues from affecting the kernel, we add an absolute:

= 2|(|Ry(2θb)(|0⟩)⟩ ⟨Ry(2θb)(|0⟩)|)| (3)

4.1 Generalization to similar oracles

The property of only one qubit having an effect on the final kernel is inherent
to separable training-data oracles, assuming that the final goal of the oracle is
to take the partial trace of the matrix in order to generate the kernel. This
strongly suggests that entanglement and circuit depth play a crucial role in
accurate training-data oracles for quantum support vector machines, implying
potential limitations for NISQ hardware in machine learning applications.

5

5 Numerical Method

In the context of classical statevector simulation of a single qubit system,

Ry(2θb)(|0⟩) =
(
cos(θb),−sin(θb)
sin(θb), cos(θb)

)
·
(
1.0
0.0

)
=

(
cos(θb)
sin(θb)

)
(4)

Thus, (3) becomes:

Trb(ρ) = 2

(∣∣∣∣(cos(θb)sin(θb)

)
⊗
(
cos(θb)
sin(θb)

)∣∣∣∣) (5)

You may input any generated training angle θb into this equation, and the
result will be a valid kernel matrix, which you can input into the 4-qubit HHL
circuit, with the rest of the inputs, resulting in a state |ψ⟩.

The binary output of the QSVM is:

sgn(⟨ψ|O|ψ⟩)

where
O = |0000⟩ ⟨0000| ⊗ |1⟩ ⟨0|

with the arbitrary assumption that sgn(0) = 1.
In our implementation used for the demonstrations, we implement the above

equations directly and without optimizations, using the python programming
language and the numpy library. The simulation of the quantum circuits will
use a simple, ad-hoc, dense statevector simulator.

6 Demonstration on Datasets

In this subsection, we will train the QSVM using the single-qubit training-data
oracle using different datasets, and demonstrate the accuracy.

6.1 MNIST Database

We will use the MNIST database of handwritten digits, choosing two arbitrary
digits and training the QSVM to differentiate between them, comparing our
method, simulated as described in chapter 5, to the method of the original
paper, simulated with 12 data points (note that the accuracy of the original
method does not change with the number of data points, the choice of 12 is
arbitrary).

To keep the comparison fair, the partial trace of both methods will trace
out all qubits except the fist qubit (i.e. b = 1), which, for clarification, does not
include any actual partial tracing in our method, as we only take the b-th theta.
However, by empirical evidence, we saw no significant difference in accuracy
between keeping the first qubit or any other qubit.

6

first digit second digit accuracy (ours) accuracy (original)

2 7 0.71 0.71
6 9 0.91 0.91
9 5 0.77 0.77

6.2 Boston Housing Data

We will use the keras Boston housing database, choosing two arbitrary fea-
ture indices and training the QSVM to differentiate between them, comparing
our method, simulated as described in 5, to the method of the original paper,
simulated with 12 data points.

first index second index accuracy (ours) accuracy (original)

10 12 0.717 0.717
4 7 0.565 0.565
2 11 0.619 0.619

As you can see, there is no difference between the two methods, further
confirming the redundancy of the method described in the original paper.

7 Conclusion

In this text, we mathematically proved the inefficiency of the training-data ora-
cle proposed in the original paper, and numerically demonstrated that a single
qubit oracle is equivalent to the oracle proposed in the original paper, by demon-
strating that both oracles have exactly equivalent accuracies. Furthermore, we
demonstrated that for simple datasets, like the MNIST optical character recog-
nition dataset, the single-qubit oracle can reach up to 91% accuracy on certain
inputs.

References

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge University Press,
2010.

[2] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum Support
Vector Machine for Big Data Classification”. In: Phys. Rev. Lett. 113.13
(2014), p. 130503. doi: 10.1103/physrevlett.113.130503. arXiv: 1307.
0471 [quant-ph].

[3] John Preskill. “Quantum Computing in the NISQ era and beyond”. In:
Quantum 2 (2018), p. 79. doi: 10.22331/q- 2018- 08- 06- 79. arXiv:
1801.00862 [quant-ph].

7

[4] Jialei Yang, Ahsan Javed Awan, and Gemma Vall-llosera. “Support Vec-
tor Machines on Noisy Intermediate Scale Quantum Computers”. In: ArXiv
abs/1909.11988 (2019). url: https://api.semanticscholar.org/CorpusID:
202889170.

[5] Qing-Yuan Wu et al. “Experimental realization of a quantum classification:
Bell state measurement via machine learning”. In: APL Machine Learning
1.3 (Sept. 2023), p. 036111. issn: 2770-9019. doi: 10.1063/5.0149414.
eprint: https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/
5.0149414/18126436/036111_1_5.0149414.pdf. url: https://doi.
org/10.1063/5.0149414.

8

